
www.systemsupport.com

Vibe Coding for Business Owners



Welcome to Camp Vibes, your month-long 
adventure into the world of vibe coding 
— where you can trade boardrooms for 
bonfires and still learn the skills to build 
smarter, faster, and more creatively with 
AI. Over the next few weeks, you’ll collect 
merit badges, tackle fun challenges, and 
walk away with real tools and prompts 
you can use in your business immediately.

CAMP VIBES



What is Camp Vibes? ...Page 3
What is Vibe Coding? ...Page 5
Why Vibe Coding Matters? ...Page 7
Important Cautions ...Page 8
What You’ll Need ...Page 9
GCES Prompting Framework ...Page 11
Your First App ...Page 13
Vibe Coding Saftey ...Page 19

462 Plain St, Suite 206
Marshfield, MA 02050

(781) 653-7916
info@systemsupport.com

www.systemsupport.com



Camp Vibes is a learning experience designed for small and medium-sized 
businesses curious about AI and automation. We combine the fun and nostal-
gia of summer camp (merit badges, campfire challenges) with the practical 
power of AI tools (ChatGPT, Claude, GitHub Copilot, Replit). By the end, you’ll 
know how to:
• Write effective prompts using the GCES framework (Goal, Context, 
Source, Expectations)
• Build a real, working tool using AI-generated code
• Identify safe practices for experimenting with AI at work
• Understand when to DIY and when to call in the pro

1. A quick overview of vibe coding and 
why it matters for your business

2. The GCES framework for writing 
prompts that actually work

3. A step-by-step mini project to help 
you build your first AI-powered tool

4. Fun badge challenges to level up your 
skills

5. Resources and next steps to keep the 
learning going

What ’s Inside This Guide

What is Camp Vibes?





Vibe coding is a new way of creating software and au-
tomations using AI — where you describe what you want 
in plain language, and the AI generates the code for you. 
Instead of memorizing syntax or hiring a developer for ev-
ery small project, you simply set the vibe (goal, style, and 
expectations) and let AI handle the heavy lifting.
• You talk, AI codes: “Build me a contact form with 
name, email, and message fields.”
• You refine, AI improves: “Now add a confirmation 
message and style it with camp-themed colors.”
• You test and deploy: A working tool in hours, not 
weeks.

The term was popularized in 2025 by Andrej Karpathy, 
who described it as “see stuff, say stuff, run stuff” — a cre-
ative, iterative approach that empowers non-developers to 
build real solutions.

What is Vibe Coding?





Small businesses face constant pressure to do more with less — lim-
ited budgets, lean teams, and the need for fast solutions. Vibe coding:
• Cuts development time: Build internal tools, forms, or dash-
boards in days instead of months.
• Reduces costs: No need for full-time developers for simple 
tasks.
• Empowers teams: Marketing, operations, and admin staff can 
create their own solutions.
• Fuels innovation: Encourages experimentation — try new ideas 
without high stakes.

Why It Matters for Small Businesses

• Otto’s Grotto (Shopify/Etsy Seller): Used ChatGPT to customize 
storefronts and automate workflows, doubling revenue in under a 
year — no coding background required.
• Solo Tech Entrepreneurs: Increasingly, startups launch using 
vibe coding as their primary build method — saving money and vali-
dating ideas faster than traditional dev cycles.
• Internal SMB Tools: From ticket dashboards to onboarding 
forms, vibe coding enables tailored solutions for unique small-busi-
ness needs.

Real-World Success Stories



Important Cautions
While vibe coding is powerful, it’s not magic — and it’s 

not risk-free.
• AI can hallucinate code: Bugs, inefficiencies, or 

missing logic may occur.
• Security gaps: AI doesn’t automatically enforce com-

pliance or secure data handling.
• Maintenance needed: Quick prototypes can become 

hard to manage if used long-term.
• Know your limits: For sensitive systems (e.g., finan-

cial data, healthcare), involve IT professionals.

Takeaways:
Vibe coding is best for prototyping, internal tools, and 

quick wins — especially when paired with good prompt-
ing and safe practices. For SMBs, it’s a gateway to inno-
vation: fast, affordable, and surprisingly fun.



Before we dive into building, let’s talk about the essentials 
you’ll need to set up your “camp.”

Core Tools
• AI Assistants: ChatGPT, Claude, or GitHub Copilot — 

for generating and refining code.
• Code Sandboxes: Replit, CodeSandbox, or Glitch — to 

run and test your code safely.
• No-Code Automators: Zapier, Make.com — for con-

necting your new tools to real workflows.
• Security Checkers: Snyk, SonarLint — to scan AI-gen-

erated code for vulnerabilities.
Tip: Think of these tools like your backpack — light-

weight, portable, and ready for exploration.

The Gear You Need and the 
Map to Use It



AI-generated code can be surprisingly powerful — but that 
means it can also be surprisingly risky if deployed without 
testing.

• Always experiment in a sandbox (isolated environment) 
before moving to live systems.

• Avoid using real customer data in your first builds.
• Review every line of code AI produces — you don’t have 

to understand it all, but check for anything that looks 
suspicious.

• Document your prompts and results for future reference 
(and repeatability).

Sandboxing Your Experiments
Safety First: 



4. Expectations
What format and quality are you expecting?
Example: “Provide clean HTML and CSS in one 
file, with comments explaining each section.”

3. Source
What references or examples can AI use?
Example: “Follow the tone and layout of our ex-
isting support form.”

2. Context
What does AI need to know about your situation?
Example: “We’re a small IT firm serving com-
pliance-heavy SMBs; the form is for onboarding 
new clients.”

1. Goal
What do you want AI to do?
Be specific: “Create a contact form with name, 
email, and message fields.”

The GCES Prompt Framework
The GCES framework helps you write better prompts and avoid the “AI 

guesswork” trap. It ensures you provide enough detail for AI to give you exactly 
what you need.

G
C
E
S



Bad Prompt:
“Write code for a contact form.”
Good Prompt:
“Write code for a contact form. It should include name, email, and 
message fields.” 
Better Prompt (GCES):
• Goal: Build a contact form with name, email, and message 

fields.
• Context: It’s for a local IT firm’s customer support page, must be 

mobile-friendly.
• Source: Follow our brand colors (green/blue) and layout similar 

to this example [link].
• Expectations: Clean HTML/CSS, include validation for required 

fields, under 150 lines.

Bad vs. Good vs. Better Prompt Example

Why GCES Works
AI isn’t a mind reader — but it’s an excellent pat-

tern matcher. GCES gives it enough detail to match 
your needs, while leaving room for creativity. More 
clarity = fewer revisions = faster builds.



The Camp Checklist App
Project Overview:

In this project, you’ll use AI to generate a simple web form that collects user 
input — perfect for things like camp packing lists, event RSVPs, or onboarding 
checklists. You’ll prompt AI to write the code, test it in a sandbox, and custom-
ize it to your needs.

This activity earns you your first Camp Vibes merit badge: Vibe Coder!

What You’ll Need
• AI Prompting Tool: ChatGPT, Claude, or 

GitHub Copilot
• Code Sandbox: Replit or CodeSandbox 

(free accounts work fine)
• Your GCES Framework Prompt: We’ll 

write it together



Step 1: Define the 
Goal (G in GCES)

Decide what your 
form will do. For this 
exercise:

“Create a Camp 
Checklist App that 
allows users to en-
ter their name, email, 
and check off items to 
pack for camp. Include 
a submit button that 
shows a ‘You’re ready 
for camp!’ message.”

Step 2: Provide Con-
text (C in GCES)

Tell AI what this is for 
and who will use it:

“This is for a small 
business learning AI 
coding. It should be 
beginner-friendly and 
have a clean, camp-
themed design.”



Step 3: Add Source (S 
in GCES)

Point to any referenc-
es or style ideas:

“Use a green and 
blue color scheme. 
Layout should be mo-
bile-friendly and sim-
ple.”

Step 4: Set Expecta-
tions (E in GCES)

Clarify what the final 
output should look like:

“Provide clean HTML, 
CSS, and JavaScript in 
one file, with comments 
explaining key sec-
tions. Keep it under 200 
lines.”



Final Prompt (Combine GCES):
Decide what your form will do. For this exercise:
“Create a simple Camp Checklist App. Goal: 

Build a form with name, email, and packing 
checklist items. Context: Small business learning 
AI coding; should be beginner-friendly and camp-
themed. Source: Use green and blue color scheme, 
mobile-friendly layout. Expectations: Provide 
clean HTML, CSS, and JavaScript in one file, with 
comments and a success message on submit.”



Step 5: Generate and 
Test the Code

1. Copy your prompt 
into ChatGPT or 
Claude.

2. Paste the generated 
code into Replit (or 
CodeSandbox).

3. Run it — check if 
the form works.

4. Adjust your prompt 
to refine colors, lay-
out, or features.

Step 6: Customize and 
Add a Feature

• Change checklist 
items (e.g., “Laptop 
charger” → “Client 
contract”)

• Add more fields 
(e.g., “Arrival date”)

• Include validation 
(e.g., make email 
required)

• Style with a camp 
vibe: wood-texture 
backgrounds, rope 
dividers



Step 7: Show Off Your 
Badge

Congrats — you built 
your first vibe-coded 
tool! Award yourself 
the Vibe Coder Badge 
and share it with your 
team (or on LinkedIn 
with #CampVibesAI).

Optional Challenge: Level It Up:
• Connect the form to Zapier or Make.com to send email confirmations
• Add a dark mode toggle for “campfire night mode”
• Include a progress bar to track completed checklist items



Camp (And Coding) Safety
1. Use a Sandbox Environment

• Always build and test in a sandbox like Replit 
or CodeSandbox — never your live site or 
production system.

• Treat vibe-coded prototypes as drafts, not 
production-ready solutions.

• Isolate test data to prevent accidental leaks or 
deletions.

2. Avoid Sensitive Data
• Don’t feed personal information, passwords, 

or financial details into AI tools.
• Use fake or anonymized data for experiments 

(e.g., “Jane Doe,” “Test Company”).
• Check your AI tool’s data retention policies 

before entering anything sensitive.

3. Review and Test AI Code Thoroughly
• AI can produce hallucinations (nonexistent 

libraries, broken logic).
• Manually review code before running it; 

highlight anything unfamiliar for extra scru-
tiny.

• Run small tests often to catch bugs early — 
don’t wait until the end.

Vibe coding is fast and fun, but moving too quickly can introduce risks 
— from security vulnerabilities to compliance issues. These best practices 
keep your experiments safe, so you can innovate without worry.



4. Security Scanning Tools
• Use tools like Snyk or SonarLint to identify 

vulnerabilities in AI-generated code.
• Watch for common risks: SQL injection, 

weak validation, outdated libraries.
• Document fixes or escalate concerns to IT 

professionals.

5. Compliance Awareness
• If you work in a regulated industry (health-

care, finance, legal), confirm that your proto-
type meets compliance requirements.

• When in doubt: keep experiments internal or 
consult your IT/security team before sharing 
externally.

6. Document Your Work
• Record prompts used, code iterations, and 

changes made.
• This helps troubleshoot issues and creates a 

knowledge base for future builds.
• Bonus: Documentation makes it easier to 

hand off prototypes to developers for produc-
tion.

7. Know When to Call for Backup
• DIY is great for prototypes — but for scaling, 

security audits, or customer-facing deploy-
ments, involve your IT provider.

• Think of vibe coding as camp crafts, not the 
finished lodge — it’s a starting point.


